\qquad

A \qquad of a number p is a number whose cube is equal to p.

The symbol \qquad is used to represent a cube root.

A \qquad is a number that can be written as the cube of an integer.

Finding Cube Roots

Ex:) Find each cube root.
a. $\quad \sqrt[3]{8}$
b. $\quad \sqrt[3]{-27}$
c. $\sqrt[3]{\frac{1}{64}}$
Notes:

OYO:) Find each cube root.
a. $\quad \sqrt[3]{1}$
b. $\sqrt[3]{-343}$
c. $\sqrt[3]{-\frac{27}{1000}}$
Notes:

Evaluating Expressions Involving Cube Roots

Ex:) Evaluate each expression.
a. $\quad 2 \sqrt[3]{-216}$
b. $\quad(\sqrt[3]{125})^{3}$
Notes:

OYO:) Evaluate each expression.
a. $\quad 18-4 \sqrt[3]{8}$
b. $\quad 5 \sqrt[3]{512}-19$
Notes:

Solving Equations Using Cube Roots

Ex:) Solve each equation.
a. $\quad x^{3}=216$
b. $\quad-\frac{1}{4} n^{3}=2$
Notes:

OYO:) Solve each equation.
a. $\quad z^{3}=-1000$
b. $\quad 3 b^{3}=1029$
Notes:
c. $\quad 33=-\frac{1}{5} m^{3}+8$

Modeling Real Life

Ex:) The baseball display case is made of plastic. How many square
Notes: inches of plastic are used to make the case?

$$
\text { Volume }=125 \text { in. }^{3}
$$

OYO:) You have 275 square inches of wrapping paper. Do you have enough wrapping paper to wrap the gift box shown? Explain.

Notes:

Volume $=343$ in. ${ }^{3}$

